根据表中的时间戳字段统计每天数据的数量

我们在存数据的时候,经常会存下数据被写入或更新的时间备用。
今天遇到一个需要统计每天插入了多少数据的需求
实现的SQL 如下:

select FROM_UNIXTIME(create_time/1000,’%Y-%m-%d’)as date,COUNT(*)
FROM table_1
where 1
GROUP BY date;
1
2
3
4
create_time/1000 是因为我存的时间戳是精确到毫秒的,如果你存的时间戳精确到秒,则不需要除以1000
————————————————
版权声明:本文为CSDN博主「刘宇LY」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_28766327/article/details/79390629

Linux启动/停止重启Mysql数据库的方法+连接MySQL

一、Linux启动/停止/重启Mysql数据库的方法

1、查看mysql版本
方法一:status;
方法二:select version();

2、Mysql启动、停止、重启常用命令
a、启动方式
1、使用 service 启动:

[root@localhost /]

# service mysqld start (5.0版本是mysqld)

[root@szxdb etc]

# service mysql start (5.5.7版本是mysql)

2、使用 mysqld 脚本启动:
/etc/inint.d/mysqld start

3、使用 safe_mysqld 启动:
safe_mysqld&

b、停止
1、使用 service 启动:
service mysqld stop

2、使用 mysqld 脚本启动:
/etc/inint.d/mysqld stop

3、mysqladmin shutdown

c、重启
1、使用 service 启动:
service mysqld restart 
service mysql restart (5.5.7版本命令)

2、使用 mysqld 脚本启动:
/etc/init.d/mysqld restart

二、连接MySQL:

格式: mysql -h主机地址 -u用户名 -p用户密码

1、例1:连接到本机上的MYSQL

找到mysql的安装目录,一般可以直接键入命令mysql -uroot -p,回车后提示你输密码,如果刚安装好MYSQL,超级用户root是没有密码的,故直接回车即可进入到MYSQL中了,MYSQL的提示符是:mysql>

2、连接到远程主机上的MySQL

假设远程主机的IP为:10.0.0.1,用户名为root,密码为123。则键入以下命令:

mysql -h10.0.0.1 -uroot -p123

(注:u与root可以不用加空格,其它也一样)

3、退出MySQL命令

exit (回车)

mysql之外键约束

1.什么是外键

  A表的主键,在B表中字段出现,就是外键。

2.什么是约束:约束是一种限制,它通过对表的行货列的数据做出限制,来确保表的数据的完整性、唯一性。比如人员表中有一列是部门id,当新增一个人员的时候,我们不需要手动的在部门id字段给这个人员设置一个部门,而是新增则个新人员记录的时候默认就会有一个部门id给了这个人员,这就是约束。

3.以上1和2结合一起就是外键约束。即:foreign key

4.具体操作

4.1创建表时,同时创建外键约束

4.2已创建表后,追加外键约束

(1)添加外键方法

-- CONSTRAINT 就是创建外键约束 fk_id是外键约束的名字
-- foreign key (dept_id) references dept(did)意思是设置person表中的dept_id字段和dept表中的did字段关联,dept表中的did字段就是person表中的dept_id的外键约束,这个外键约束的名字叫做fk_id,一般潜规则外键约束的名字开头是fk_
alter table person add CONSTRAINT fk_id foreign key (dept_id) REFERENCES dept(did);

此时可以发现在person表中的,点击外键按钮,可以看到创建出来的外键

栏位表示的是person表中的dept_id字段,参考栏位的did就是person表中的dept_id字段的约束,dept_id字段的值被约束为dept字段did字段的值

  主表就是外键约束有约束值的那个表

从表就是被约束的那个表

(2)外键约束的4种类型,RESTRICT、NO ACTION、CASCADE、SET NULL主要针对于外键里的删除时和更新时

RESTRICT(约束):如果出现在删除时,意思是约束外键主键did记录(主表中的记录)不能直接删除,必须先删除被约束的表(从表)字段中dept_id所有这个外键主键值对应的记录,才能删除外键约束(主表中的记录)

NO ACTION:

CASCADE:删除选择这个时,删除主表中的记录时,主表中的这个主键id关联的从表的这个id值所在的记录也会被删除。建议不选。

SET NULL :删除选择这个时,如果从表(被约束的字段所在的表中)被约束的字段的值设置为可以为空时,那么当删除主表的记录时,主表中被删除的这个记录对应的主键值(约束从表字段的那个值)在从表中对应的字段中出现的那个记录的被约束字段的值就会变为NULL。

最常用的是选择RESTRICT不让删的这个约束、或者选择SET NULL删除后值表为空。

目前公司都不太喜欢使用这种真实的外键约束,而是使用虚拟的外键约束。虚拟外键约束:就是人员表中的部门id字段中的id值是部门表中的主键id的值,这就是虚拟外键约束,也是目前来说比较流行使用的。

(3)删除外键

-- 删除外键约束
alter table person DROP foreign key fk_id;

5.其他约束类型

-- 向t5表中插入两条记录,第二值用的都是默认值,如果是默认值则可以不填或填default
insert into t5 values(3, DEFAULT), (4, DEFAULT);

如何使用myisamchk和mysqlcheck工具快速修复损坏的MySQL数据库文件

有时候数据库突然就坏了很郁闷,用mysqlcheck.exe可以修复受损数据库

java

由于服务器的数据库硬盘空间满了,由于大量写入数据失败导致了出现“Duplicate entry ” for key ‘username’”的错误。

如果,出现这样的mysql数据库错误很可能是mysql数据库索引出了问题。那么,什么是mysql数据库索引?

分析:索引如果是primary unique这两两种,那么数据表的数据对应的这个字段就必须保证其每条记录的唯一性。否则就会产生这个错误。

一般发生在对数据库写操作的时候,例如Discuz!4.1论坛程序要求所有会员的用户名username必须唯一,即username 的索引是unique,这时如果强行往cdb_members表里插入一个已有的username的记录就会发上这个错误,或者将一条记录的username更新为已有的一个username。

比如某网友的dedecms网站出问题了,访问一看,果然全屏报错,检查mysql日志,错误信息为:

Table .dedecmsv4dede_archives is marked as crashed and should be repaired

提示说cms的文章表dede_archives被标记有问题,需要修复。

于是赶快恢复历史数据,上网查找原因。最终将问题解决。

解决方法如下:

找到mysql的安装目录的bin/myisamchk工具,在命令行中输入:

myisamchk -c -r ../data/dedecmsv4/dede_archives.MYI

然后myisamchk 工具会帮助你恢复数据表的索引。重新启动mysql,问题解决。

那么,修复mysql数据库一般可以myisamchk工具或者mysqlcheck工具用这二种方法:

1、myisamchk工具

使用 myisamchk 必须暂时停止 MySQL 服务器。例如,我们要检修 discuz 数据库。执行以下操作:

# service mysql stop (停止 MySQL );

# myisamchk -r /数据库文件的绝对路径/*MYI

# service mysql start

myisamchk 会自动检查并修复数据表中的索引错误。

2、mysqlcheck工具

使用 mysqlcheck 无需停止 MySQL ,可以进行热修复。操作步骤如下:

# mysqlcheck -r discuz.*

# service mysql stop (停止 MySQL );

# myisamchk -r /数据库文件的绝对路径/*MYI

# service mysql start

myisamchk 会自动检查并修复数据表中的索引错误。

注意:无论是 myisamchk 还是 mysqlcheck ,一般情况下不要使用 -f 强制修复,-f 参数会在遇到一般修复无法成功的时候删除部分出错数据以尝试修复。所以,不到万不得已不要使用 -f。

下面是其它网友的补充

检查修复所有数据库:

# mysqlcheck -A -o -r -p 
Enter password: 
db1  OK 
db2  OK  
db3  OK 
db4  OK 
…… 
…… 
…… 

修复指定的数据库用 

# mysqlcheck  -o -r Database_NAME -p 

即可

命令详解:

mysqlcheck客户端可以检查和修复MyISAM表。它还可以优化和分析表。
mysqlcheck的功能类似myisamchk,但其工作不同。主要差别是当mysqld服务器在运行时必须使用mysqlcheck,而myisamchk应用于服务器没有运行时。使用mysqlcheck的好处是不需要停止服务器来检查或修复表。
Mysqlcheck为用户提供了一种方便的使用SQL语句CHECK TABLE、REPAIR TABLE、ANALYZE TABLE和OPTIMIZE TABLE的方式。它确定在要执行的操作中使用使用哪个语句,然后将语句发送到要执行的服务器上。
有3种方式来调用mysqlcheck:

shell> mysqlcheck[options] db_name [tables]
shell> mysqlcheck[options] —database DB1 [DB2 DB3…]
shell> mysqlcheck[options] –all–database

如果没有指定任何表或使用—database或–all–database选项,则检查整个数据库。
同其它客户端比较,mysqlcheck有一个特殊特性。重新命名二进制可以更改检查表的默认行为(–check)。如果你想要一个工具默认可以修复表的工具,只需要将mysqlcheck重新复制为mysqlrepair,或者使用一个符号链接mysqlrepair链接mysqlcheck。如果调用mysqlrepair,可按照命令修复表。

下面的名可用来更改mysqlcheck的默认行为:

mysqlrepair

 默认选项为–repair
 
mysqlanalyze
 默认选项为–analyze
 
mysqloptimize
 默认选项为–optimize
 
mysqlcheck支持下面的选项:
·         —help,-?
显示帮助消息并退出。
·         –all–database,-A
检查所有数据库中的所有表。与使用—database选项相同,在命令行中命名所有数据库。
·         –all-in-1,-1
不是为每个表发出一个语句,而是为命名数据库中待处理的所有表的每个数据库执行一个语句。
·         –analyze,-a
分析表。
·         –auto-repair
如果某个被检查的表破坏了,自动修复它。检查完所有表后自动进行所有需要的修复。
·         –character-sets-dir=path
字符集的安装目录。参见5.10.1节,“数据和排序用字符集”。
·         –check,-c
检查表的错误。
·         –check-only-changed,-C
只检查上次检查以来已经更改的或没有正确关闭的表。
·         –compress
压缩在客户端和服务器之间发送的所有信息(如果二者均支持压缩)。
·         —database,-B
处理数据库中命名的所有表。使用该选项,所有字名参量被看作数据库名,而不是表名。
·         —debug[=debug_options],-# [debug_options]
写调试日志。debug_options字符串通常为’d:t:o,file_name’。
·         –default-character-set=charset
使用charsetas默认字符集。参见5.10.1节,“数据和排序用字符集”。
·         –extended,-e
如果你正使用该选项来检查表,可以确保它们100%地一致,但需要很长的时间。
如果你正使用该选项来修复表,则运行扩展修复,不但执行的时间很长,而且还会产生大量的垃圾行! 
·         –fast,-F
只检查没有正确关闭的表。
·         –force,-f
即使出现SQL错误也继续。
·         –host=host_name,-h host_name
连接给定主机上的MySQL服务器。
·         –medium-check,-m
执行比–extended操作更快的检查。只能发现99.99%的错误,在大多数情况下这已经足够了。
·         –optimize,-o
优化表。
·         –password[=password],-p[password]
当连接服务器时使用的密码。如果使用短选项形式(-p),选项和 密码之间不能有空格。如果在命令行中–password或-p选项后面没有 密码值,则提示输入一个密码。
·         –port=port_num,-P port_num
用于连接的TCP/IP端口号。
·         –protocol={TCP | SOCKET | PIPE | MEMORY} 
使用的连接协议。
·         –quick,-q
如果你正使用该选项在检查表,它防止扫描行以检查错误链接的检查。这是最快的检查方法。
如果你正使用该选项在修复表,它尝试只修复索引树。这是最快的修复方法。
·         –repair,-r
执行可以修复大部分问题的修复,只是唯一值不唯一时不能修复。
·         –silent,-s
沉默模式。只打印错误消息。
·         –socket=path,-S path
用于连接的套接字文件。
·         –tables
覆盖—database或-B选项。选项后面的所有参量被视为表名。
·         –user=user_name,-u user_name
当连接服务器时使用的MySQL用户名。
·         –verbose,-v
冗长模式。打印关于各阶段程序操作的信息。
·         –version,-V
显示版本信息并退出。

修复Mysql表时提示:myisamchk: error: 140 when opening MyISAM-table

这是Mysql5.6以后出现的一个bug,解决方法时修复表时不要带上MYI的后缀。
如原来使用

myisamchk -rf /data/mysql/table/table1.MYI

改为

myisamchk -rf /data/mysql/table/table1

即可解决。

解决:Reading table information for completion of table and column names

mysql -A不预读数据库信息(use dbname 更快)—Reading table information for completion of table and column names You can turn off this feature to get a quicker startup with -A

这里写图片描述

mysql> use dbname
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
让后就卡在这里。

上面卡住的原因::
是由于数据库太大,即数据库中表非常多,所以如果预读数据库信息,将非常慢,所以就卡住了,如果数据库中表非常少,将不会出现问题。

出现问题的原因是::
我们进入mysql 时,没有使用-A参数;
即我们使用
mysql -hhostname -uusername -ppassword -Pport 的方式进入数据,
而没有使用
mysql -hhostname -uusername -ppassword -Pport -A的方式进入数据库。

       当我们打开数据库,即use   dbname时,要预读数据库信息,当使用-A参数时,就不预读数据库信息。

ERROR 1194 (HY000): Table ‘t1’ is marked as crashed and should be repaired

遇到这个问题几个敲命令轻松搞定

1、首先进入mysql命令台:

mysql -u root -p 回车  输入密码

2、查询所有的库

mysql> show databases; 

3、进入数据库“eduyun_2015_sp1”是库名

mysql> use eduyun_2015_sp1;

4、check table newabout(newabout–出现错误的表)用来检查出现问题的表的状态,出现错误就正常

5、然后用repair table newabout

6、再用check table newabout 检查一下就ok了

7、ok 搞定
———————

今天测试mysql,发现一个表出现了以下报错

ERROR 1194 (HY000): Table ‘t1’ is marked as crashed and should be repaired

在网上搜有些说需要通下面方法进行修复

[root@localhost data]# myisamchk -f ./test2/*.MYI
Checking MyISAM file: ./test2/t1.MYI
Data records:   24926   Deleted blocks:       0
– check file-size
myisamchk: error: Size of datafile is: 73                Should be: 174482
– recovering (with keycache) MyISAM-table ‘./test2/t1.MYI’
Data records: 24926
Data records: 5


———


Checking MyISAM file: ./test2/t2.MYI
Data records:  482688   Deleted blocks:       0
– check file-size
– check record delete-chain
– check key delete-chain
– check index reference
– check data record references index: 1
– check record links
          
———


Checking MyISAM file: ./test2/t4.MYI
Data records:  482688   Deleted blocks:       0
– check file-size
– check record delete-chain
– check key delete-chain
– check index reference


———


Checking MyISAM file: ./test2/t5.MYI
Data records:  482688   Deleted blocks:       0
– check file-size
– check record delete-chain
– check key delete-chain
– check index reference
– check record links

然后在mysql 里使用repair中进行修复,成功。

mysql> repair table cmxt.cm_user_pref;

+——————-+——–+———-+———-+

| Table             | Op     | Msg_type | Msg_text |

+——————-+——–+———-+———-+

| cmxt.cm_user_pref | repair | status   | OK       |

+——————-+——–+———-+———-+

后来经过实验发现

首先检查check table t1

mysql> check table t1;
+———-+——-+———-+—————————————————+
| Table    | Op    | Msg_type | Msg_text                                          |
+———-+——-+———-+—————————————————+
| test2.t1 | check | error    | Size of datafile is: 73         Should be: 174482 |
| test2.t1 | check | error    | Corrupt                                           |
+———-+——-+———-+—————————————————+
2 rows in set (0.00 sec)

然后再使用myisamchk来修复

[root@localhost mysql]# myisamchk -f ./data/test2/t1.MYI
Checking MyISAM file: ./data/test2/t1.MYI
Data records:   24926   Deleted blocks:       0
myisamchk: warning: Table is marked as crashed
– check file-size
myisamchk: error: Size of datafile is: 73                Should be: 174482
– recovering (with keycache) MyISAM-table ‘./data/test2/t1.MYI’
Data records: 24926
Data records: 5

然后再查看t1表

mysql> select * from t1;
+————-+
| str_number  |
+————-+
|        NULL |
|        NULL |
| -1774844896 |
|        NULL |
|        NULL |
+————-+
5 rows in set (0.00 sec)

一条SQL语句查出每个班的及格人数和不及格人数,格式为:class,及格人数,不及格人数(score>=60为及格)

题目描述:

现有表 tb1 ,有字段  name, class, score .分别代表 姓名,所在班级,分数。

要求:用一条SQL语句查询出每个班的及格人数和不及格人数,格式为:class,及格人数,不及格人数(score>=60为及格)

解答:

select class 班级,

sum(case when score>=60 then 1 else 0 end) as 及格人数,
                  sum(case when score<60 then 1 else 0 end) as 不及格人数
        from tb1
        group by class;

mysql联合索引

命名规则:表名_字段名
1、需要加索引的字段,要在where条件中
2、数据量少的字段不需要加索引
3、如果where条件中是OR关系,加索引不起作用
4、符合最原则

https://segmentfault.com/q/1010000003984016/a-1020000003984281

联合索引又叫复合索引。对于复合索引:Mysql从左到右的使用索引中的字段,一个查询可以只使用索引中的一部份,但只能是最左侧部分。例如索引是key index (a,b,c). 可以支持a | a,ba,b,c 3种组合进行查找,但不支持 b,c进行查找 .当最左侧字段是常量引用时,索引就十分有效。


两个或更多个列上的索引被称作复合索引。
利用索引中的附加列,您可以缩小搜索的范围,但使用一个具有两列的索引 不同于使用两个单独的索引。
复合索引的结构与电话簿类似,人名由姓和名构成,电话簿首先按姓氏对进行排序,然后按名字对有相同姓氏的人进行排序。
如果您知 道姓,电话簿将非常有用;
如果您知道姓和名,电话簿则更为有用,
但如果您只知道名不姓,电话簿将没有用处

所以说创建复合索引时,应该仔细考虑列的顺序。对索引中的所有列执行搜索或仅对前几列执行搜索时,复合索引非常有用;仅对后面的任意列执行搜索时,复合索引则没有用处。

http://blog.csdn.net/lmh12506/article/details/8879916

当一个表有多条索引可走时,  Mysql  根据查询语句的成本来选择走哪条索引, 联合索引的话, 它往往计算的是第一个字段(最左边那个), 这样往往会走错索引. 如: 
索引Index_1(Create_Time, Category_ID), Index_2(Category_ID) 

如果每天的数据都特别多, 而且有很多category, 但具体每个category的记录不会很多.

当查询SQL条件为select …where create_time ….and category_id=..时, 很可能不走索引Index_1, 而走索引Index_2, 导致查询比较慢.

解决办法是将索引字段的顺序调换一下.

http://www.cnblogs.com/krisy/archive/2013/07/12/3186258.html创建索引

在执行CREATE TABLE语句时可以创建索引,也可以单独用CREATE INDEX或ALTER TABLE来为表增加索引。1.ALTER TABLE

ALTER TABLE用来创建普通索引、UNIQUE索引或PRIMARY KEY索引。

ALTER TABLE table_name ADD INDEX index_name (column_list)

ALTER TABLE table_name ADD UNIQUE (column_list)

ALTER TABLE table_name ADD PRIMARY KEY (column_list)

其中table_name是要增加索引的表名,column_list指出对哪些列进行索引,多列时各列之间用逗号分隔。索引名index_name可选,缺省时,MySQL将根据第一个索引列赋一个名称。另外,ALTER TABLE允许在单个语句中更改多个表,因此可以在同时创建多个索引。2.CREATE INDEX

CREATE INDEX可对表增加普通索引或UNIQUE索引。

CREATE INDEX index_name ON table_name (column_list)

CREATE UNIQUE INDEX index_name ON table_name (column_list)

table_name、index_name和column_list具有与ALTER TABLE语句中相同的含义,索引名不可选。另外,不能用CREATE INDEX语句创建PRIMARY KEY索引。3.索引类型

在创建索引时,可以规定索引能否包含重复值。如果不包含,则索引应该创建为PRIMARY KEY或UNIQUE索引。对于单列惟一性索引,这保证单列不包含重复的值。对于多列惟一性索引,保证多个值的组合不重复。

PRIMARY KEY索引和UNIQUE索引非常类似。
事实上,PRIMARY KEY索引仅是一个具有名称PRIMARY的UNIQUE索引。这表示一个表只能包含一个PRIMARY KEY,因为一个表中不可能具有两个同名的索引。

下面的SQL语句对students表在sid上添加PRIMARY KEY索引。

ALTER TABLE students ADD PRIMARY KEY (sid)4.  删除索引

可利用ALTER TABLE或DROP INDEX语句来删除索引。类似于CREATE INDEX语句,DROP INDEX可以在ALTER TABLE内部作为一条语句处理,语法如下。

DROP INDEX index_name ON talbe_name

ALTER TABLE table_name DROP INDEX index_name

ALTER TABLE table_name DROP PRIMARY KEY

其中,前两条语句是等价的,删除掉table_name中的索引index_name。

第3条语句只在删除PRIMARY KEY索引时使用,因为一个表只可能有一个PRIMARY KEY索引,因此不需要指定索引名。如果没有创建PRIMARY KEY索引,但表具有一个或多个UNIQUE索引,则MySQL将删除第一个UNIQUE索引。

如果从表中删除了某列,则索引会受到影响。对于多列组合的索引,如果删除其中的某列,则该列也会从索引中删除。如果删除组成索引的所有列,则整个索引将被删除。

5.查看索引

mysql> show index from tblname;mysql> show keys from tblname;

  · Table

  表的名称。

  · Non_unique

  如果索引不能包括重复词,则为0。如果可以,则为1。

  · Key_name

  索引的名称。

  · Seq_in_index

  索引中的列序列号,从1开始。

  · Column_name

  列名称。

  · Collation

  列以什么方式存储在索引中。在MySQL中,有值‘A’(升序)或NULL(无分类)。

  · Cardinality

  索引中唯一值的数目的估计值。通过运行ANALYZE TABLE或myisamchk -a可以更新。基数根据被存储为整数的统计数据来计数,所以即使对于小型表,该值也没有必要是精确的。基数越大,当进行联合时,MySQL使用该索引的机会就越大。

  · Sub_part

  如果列只是被部分地编入索引,则为被编入索引的字符的数目。如果整列被编入索引,则为NULL。

  · Packed

  指示关键字如何被压缩。如果没有被压缩,则为NULL。

  · Null

  如果列含有NULL,则含有YES。如果没有,则该列含有NO。

  · Index_type

  用过的索引方法(BTREE, FULLTEXT, HASH, RTREE)。

  · Comment

6.什么情况下使用索引
       表的主关键字

自动建立唯一索引

如zl_yhjbqk(用户基本情况)中的hbs_bh(户标识编号)

表的字段唯一约束

ORACLE利用索引来保证数据的完整性

如lc_hj(流程环节)中的lc_bh+hj_sx(流程编号+环节顺序)

直接条件查询的字段

在SQL中用于条件约束的字段

如zl_yhjbqk(用户基本情况)中的qc_bh(区册编号)

select * from zl_yhjbqk where qc_bh=’<????甼曀???>7001’

查询中与其它表关联的字段

字段常常建立了外键关系

如zl_ydcf(用电成份)中的jldb_bh(计量点表编号)

select * from zl_ydcf a,zl_yhdb b where a.jldb_bh=b.jldb_bh and b.jldb_bh=’540100214511’

查询中排序的字段

排序的字段如果通过索引去访问那将大大提高排序速度

select * from zl_yhjbqk order by qc_bh(建立qc_bh索引)

select * from zl_yhjbqk where qc_bh=’7001’ order by cb_sx(建立qc_bh+cb_sx索引,注:只是一个索引,其中包括qc_bh和cb_sx字段)

查询中统计或分组统计的字段

select max(hbs_bh) from zl_yhjbqk

select qc_bh,count(*) from zl_yhjbqk group by qc_bh

什么情况下应不建或少建索引

表记录太少

如果一个表只有5条记录,采用索引去访问记录的话,那首先需访问索引表,再通过索引表访问数据表,一般索引表与数据表不在同一个数据块,这种情况下ORACLE至少要往返读取数据块两次。而不用索引的情况下ORACLE会将所有的数据一次读出,处理速度显然会比用索引快。

如表zl_sybm(使用部门)一般只有几条记录,除了主关键字外对任何一个字段建索引都不会产生性能优化,实际上如果对这个表进行了统计分析后ORACLE也不会用你建的索引,而是自动执行全表访问。如:

select * from zl_sybm where sydw_bh=’5401’(对sydw_bh建立索引不会产生性能优化)

经常插入、删除、修改的表

对一些经常处理的业务表应在查询允许的情况下尽量减少索引,如zl_yhbm,gc_dfss,gc_dfys,gc_fpdy等业务表。

数据重复且分布平均的表字段

假如一个表有10万行记录,有一个字段A只有T和F两种值,且每个值的分布概率大约为50%,那么对这种表A字段建索引一般不会提高数据库的查询速度。

经常和主字段一块查询但主字段索引值比较多的表字段

如gc_dfss(电费实收)表经常按收费序号、户标识编号、抄表日期、电费发生年月、操作 标志来具体查询某一笔收款的情况,如果将所有的字段都建在一个索引里那将会增加数据的修改、插入、删除时间,从实际上分析一笔收款如果按收费序号索引就已 经将记录减少到只有几条,如果再按后面的几个字段索引查询将对性能不产生太大的影响。

对千万级MySQL数据库建立索引的事项及提高性能的手段

一、注意事项:

首先,应当考虑表空间和磁盘空间是否足够。我们知道索引也是一种数据,在建立索引的时候势必也会占用大量表空间。因此在对一大表建立索引的时候首先应当考虑的是空间容量问题。

其次,在对建立索引的时候要对表进行加锁,因此应当注意操作在业务空闲的时候进行。

二、性能调整方面:

首当其冲的考虑因素便是磁盘I/O。物理上,应当尽量把索引与数据分散到不同的磁盘上(不考虑阵列的情况)。逻辑上,数据表空间与索引表空间分开。这是在建索引时应当遵守的基本准则。

其次,我们知道,在建立索引的时候要对表进行全表的扫描工作,因此,应当考虑调大初始化参数db_file_multiblock_read_count的值。一般设置为32或更大。

再次,建立索引除了要进行全表扫描外同时还要对数据进行大量的排序操作,因此,应当调整排序区的大小。

    9i之前,可以在session级别上加大sort_area_size的大小,比如设置为100m或者更大。

    9i以后,如果初始化参数workarea_size_policy的值为TRUE,则排序区从pga_aggregate_target里自动分配获得。

最后,建立索引的时候,可以加上nologging选项。以减少在建立索引过程中产生的大量redo,从而提高执行的速度。

MySql在建立索引优化时需要注意的问题

设计好MySql的索引可以让你的数据库飞起来,大大的提高数据库效率。设计MySql索引的时候有一下几点注意:

1,创建索引

对于查询占主要的应用来说,索引显得尤为重要。很多时候性能问题很简单的就是因为我们忘了添加索引而造成的,或者说没有添加更为有效的索引导致。如果不加

索引的话,那么查找任何哪怕只是一条特定的数据都会进行一次全表扫描,如果一张表的数据量很大而符合条件的结果又很少,那么不加索引会引起致命的性能下降。
但是也不是什么情况都非得建索引不可,比如性别可能就只有两个值,建索引不仅没什么优势,还会影响到更新速度,这被称为过度索引。

2,复合索引

比如有一条语句是这样的:select * from users where area=’beijing’ and age=22;

如果我们是在area和age上分别创建单个索引的话,由于mysql查询每次只能使用一个索引,所以虽然这样已经相对不做索引时全表扫描提高了很多效

率,但是如果在area、age两列上创建复合索引的话将带来更高的效率。如果我们创建了(area, age,salary)的复合索引,那么其实相当于创建了(area,age,salary)、(area,age)、(area)三个索引,这被称为最佳左前缀特性。
因此我们在创建复合索引时应该将最常用作限制条件的列放在最左边,依次递减。

3,索引不会包含有NULL值的列

只要列中包含有NULL值都将不会被包含在索引中,复合索引中只要有一列含有NULL值,那么这一列对于此复合索引就是无效的。所以我们在数据库设计时不要让字段的默认值为NULL。

4,使用短索引

对串列进行索引,如果可能应该指定一个前缀长度。例如,如果有一个CHAR(255)的 列,如果在前10 个或20 个字符内,多数值是惟一的,那么就不要对整个列进行索引。短索引不仅可以提高查询速度而且可以节省磁盘空间和I/O操作。

5,排序的索引问题

mysql查询只使用一个索引,因此如果where子句中已经使用了索引的话,那么order by中的列是不会使用索引的。因此数据库默认排序可以符合要求的情况下不要使用排序操作;尽量不要包含多个列的排序,如果需要最好给这些列创建复合索引

6,like语句操作

一般情况下不鼓励使用like操作,如果非使用不可,如何使用也是一个问题。like “%aaa%” 不会使用索引而like “aaa%”可以使用索引。

7,不要在列上进行运算

select * from users where

YEAR(adddate)

8,不使用NOT IN

NOT IN都不会使用索引将进行全表扫描。NOT IN可以NOT EXISTS代替

http://www.cnblogs.com/alazalazalaz/p/4083696.html

mysql联合索引如何创建

例如:

CREATE TABLE `test` (‘aaa’ varchar(16) NOT NULL default ”, ‘bbb’ varchar(16) NOT NULL default ”, ‘ccc’ int(11) UNSIGNED NOT NULL default 0, KEY `sindex` (`aaa`,`bbb`,`ccc`) ) ENGINE=MyISAM COMMENT=”;

这样就在 aaa、bbb、ccc 3列上建立联合索引了。

如果表已经建好了,那么就在phpmyadmin里面执行:
alert table test add INDEX `sindex` (`aaa`,`bbb`,`ccc`)

就可以在这3列上建立联合索引

mysql大数据高并发处理

转载地址:https://www.cnblogs.com/jakentec/p/4441081.html

一、数据库结构的设计

如果不能设计一个合理的数据库模型,不仅会增加客户端和服务器段程序的编程和维护的难度,而且将会影响系统实际运行的性能。所以,在一个系统开始实施之前,完备的数据库模型的设计是必须的。

在一个系统分析、设计阶段,因为数据量较小,负荷较低。我们往往只注意到功能的实现,而很难注意到性能的薄弱之处,等到系统投入实际运行一段时间后,才发现系统的性能在降低,这时再来考虑提高系统性能则要花费更多的人力物力,而整个系统也不可避免的形成了一个打补丁工程。

所以在考虑整个系统的流程的时候,我们必须要考虑,在高并发大数据量的访问情况下,我们的系统会不会出现极端的情况。(例如:对外统计系统在7月16日出现的数据异常的情况,并发大数据量的的访问造成,数据库的响应时间不能跟上数据刷新的速度造成。具体情况是:在日期临界时(00:00:00),判断数据库中是否有当前日期的记录,没有则插入一条当前日期的记录。在低并发访问的情况下,不会发生问题,但是当日期临界时的访问量相当大的时候,在做这一判断的时候,会出现多次条件成立,则数据库里会被插入多条当前日期的记录,从而造成数据错误。),数据库的模型确定下来之后,我们有必要做一个系统内数据流向图,分析可能出现的瓶颈。

为了保证数据库的一致性和完整性,在逻辑设计的时候往往会设计过多的表间关联,尽可能的降低数据的冗余。(例如用户表的地区,我们可以把地区另外存放到一个地区表中)如果数据冗余低,数据的完整性容易得到保证,提高了数据吞吐速度,保证了数据的完整性,清楚地表达数据元素之间的关系。而对于多表之间的关联查询(尤其是大数据表)时,其性能将会降低,同时也提高了客户端程序的编程难度,因此,物理设计需折衷考虑,根据业务规则,确定对关联表的数据量大小、数据项的访问频度,对此类数据表频繁的关联查询应适当提高数据冗余设计但增加了表间连接查询的操作,也使得程序的变得复杂,为了提高系统的响应时间,合理的数据冗余也是必要的。设计人员在设计阶段应根据系统操作的类型、频度加以均衡考虑。

另外,最好不要用自增属性字段作为主键与子表关联。不便于系统的迁移和数据恢复。对外统计系统映射关系丢失(******************)。

原来的表格必须可以通过由它分离出去的表格重新构建。使用这个规定的好处是,你可以确保不会在分离的表格中引入多余的列,所有你创建的表格结构都与它们的实际需要一样大。应用这条规定是一个好习惯,不过除非你要处理一个非常大型的数据,否则你将不需要用到它。(例如一个通行证系统,我可以将USERID,USERNAME,USERPASSWORD,单独出来作个表,再把USERID作为其他表的外键)

表的设计具体注意的问题:

1、数据行的长度不要超过8020字节,如果超过这个长度的话在物理页中这条数据会占用两行从而造成存储碎片,降低查询效率。

2、能够用数字类型的字段尽量选择数字类型而不用字符串类型的(电话号码),这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接回逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

3、对于不可变字符类型char和可变字符类型varchar 都是8000字节,char查询快,但是耗存储空间,varchar查询相对慢一些但是节省存储空间。在设计字段的时候可以灵活选择,例如用户名、密码等长度变化不大的字段可以选择CHAR,对于评论等长度变化大的字段可以选择VARCHAR。

4、字段的长度在最大限度的满足可能的需要的前提下,应该尽可能的设得短一些,这样可以提高查询的效率,而且在建立索引的时候也可以减少资源的消耗。

二、查询的优化

保证在实现功能的基础上,尽量减少对数据库的访问次数(可以用缓存保存查询结果,减少查询次数);通过搜索参数,尽量减少对表的访问行数,最小化结果集,从而减轻网络负担;能够分开的操作尽量分开处理,提高每次的响应速度;在数据窗口使用SQL时,尽量把使用的索引放在选择的首列;算法的结构尽量简单;在查询时,不要过多地使用通配符如SELECT * FROM T1语句,要用到几列就选择几列如:SELECTCOL1,COL2 FROM T1;在可能的情况下尽量限制尽量结果集行数如:SELECT TOP 300 COL1,COL2,COL3 FROM T1,因为某些情况下用户是不需要那么多的数据的。

在没有建索引的情况下,数据库查找某一条数据,就必须进行全表扫描了,对所有数据进行一次遍历,查找出符合条件的记录。在数据量比较小的情况下,也许看不出明显的差别,但是当数据量大的情况下,这种情况就是极为糟糕的了。

SQL语句在SQL SERVER中是如何执行的,他们担心自己所写的SQL语句会被SQL SERVER误解。比如:

select * from table1 where name=’zhangsan’ and tID > 10000 和执行:

select * from table1 where tID > 10000 and name=’zhangsan’

一些人不知道以上两条语句的执行效率是否一样,因为如果简单的从语句先后上看,这两个语句的确是不一样,如果tID是一个聚合索引,那么后一句仅仅从表的10000条以后的记录中查找就行了;而前一句则要先从全表中查找看有几个name=’zhangsan’的,而后再根据限制条件条件tID>10000来提出查询结果。

事实上,这样的担心是不必要的。SQL SERVER中有一个“查询分析优化器”,它可以计算出where子句中的搜索条件并确定哪个索引能缩小表扫描的搜索空间,也就是说,它能实现自动优化。虽然查询优化器可以根据where子句自动的进行查询优化,但有时查询优化器就会不按照您的本意进行快速查询。

在查询分析阶段,查询优化器查看查询的每个阶段并决定限制需要扫描的数据量是否有用。如果一个阶段可以被用作一个扫描参数(SARG),那么就称之为可优化的,并且可以利用索引快速获得所需数据。

SARG的定义:用于限制搜索的一个操作,因为它通常是指一个特定的匹配,一个值的范围内的匹配或者两个以上条件的AND连接。形式如下:

列名 操作符 <常数 或 变量> 或 <常数 或 变量> 操作符 列名

列名可以出现在操作符的一边,而常数或变量出现在操作符的另一边。如:

Name=’张三’

价格>5000

5000<价格

Name=’张三’ and 价格>5000

如果一个表达式不能满足SARG的形式,那它就无法限制搜索的范围了,也就是SQL SERVER必须对每一行都判断它是否满足WHERE子句中的所有条件。所以一个索引对于不满足SARG形式的表达式来说是无用的。

所以,优化查询最重要的就是,尽量使语句符合查询优化器的规则避免全表扫描而使用索引查询。

具体要注意的:

1.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num is null

可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

select id from t where num=0

2.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。优化器将无法通过索引来确定将要命中的行数,因此需要搜索该表的所有行。

3.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num=10 or num=20

可以这样查询:

select id from t where num=10

union all

select id from t where num=20

4.in 和 not in 也要慎用,因为IN会使系统无法使用索引,而只能直接搜索表中的数据。如:

select id from t where num in(1,2,3)

对于连续的数值,能用 between 就不要用 in 了:

select id from t where num between 1 and 3

5.尽量避免在索引过的字符数据中,使用非打头字母搜索。这也使得引擎无法利用索引。

见如下例子:

SELECT * FROM T1 WHERE NAME LIKE ‘%L%’

SELECT * FROM T1 WHERE SUBSTING(NAME,2,1)=’L’

SELECT * FROM T1 WHERE NAME LIKE ‘L%’

即使NAME字段建有索引,前两个查询依然无法利用索引完成加快操作,引擎不得不对全表所有数据逐条操作来完成任务。而第三个查询能够使用索引来加快操作。

6.必要时强制查询优化器使用某个索引,如在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

select id from t where num=@num

可以改为强制查询使用索引:

select id from t with(index(索引名)) where num=@num

7.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:

SELECT * FROM T1 WHERE F1/2=100

应改为:

SELECT * FROM T1 WHERE F1=100*2

SELECT * FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=’5378’

应改为:

SELECT * FROM RECORD WHERE CARD_NO LIKE ‘5378%’

SELECT member_number, first_name, last_name FROM members

WHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21

应改为:

SELECT member_number, first_name, last_name FROM members

WHERE dateofbirth < DATEADD(yy,-21,GETDATE())

即:任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。

8.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where substring(name,1,3)=’abc’–name以abc开头的id

select id from t where datediff(day,createdate,’2005-11-30′)=0–‘2005-11-30’生成的id

应改为:

select id from t where name like ‘abc%’

select id from t where createdate>=’2005-11-30′ and createdate<‘2005-12-1’

9.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

10.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

11.很多时候用 exists是一个好的选择:

select num from a where num in(select num from b)

用下面的语句替换:

select num from a where exists(select 1 from b where num=a.num)

SELECT SUM(T1.C1)FROM T1 WHERE(

(SELECT COUNT(*)FROM T2 WHERE T2.C2=T1.C2>0)

SELECT SUM(T1.C1) FROM T1WHERE EXISTS(

SELECT * FROM T2 WHERE T2.C2=T1.C2)

两者产生相同的结果,但是后者的效率显然要高于前者。因为后者不会产生大量锁定的表扫描或是索引扫描。

如果你想校验表里是否存在某条纪录,不要用count(*)那样效率很低,而且浪费服务器资源。可以用EXISTS代替。如:

IF (SELECT COUNT(*) FROM table_name WHERE column_name = ‘xxx’)

可以写成:

IF EXISTS (SELECT * FROM table_name WHERE column_name = ‘xxx’)

经常需要写一个T_SQL语句比较一个父结果集和子结果集,从而找到是否存在在父结果集中有而在子结果集中没有的记录,如:

SELECT a.hdr_key FROM hdr_tbl a—- tbl a 表示tbl用别名a代替

WHERE NOT EXISTS (SELECT * FROM dtl_tbl b WHERE a.hdr_key = b.hdr_key)

SELECT a.hdr_key FROM hdr_tbl a

LEFT JOIN dtl_tbl b ON a.hdr_key = b.hdr_key WHERE b.hdr_key IS NULL

SELECT hdr_key FROM hdr_tbl

WHERE hdr_key NOT IN (SELECT hdr_key FROM dtl_tbl)

三种写法都可以得到同样正确的结果,但是效率依次降低。

12.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

13.避免频繁创建和删除临时表,以减少系统表资源的消耗。

14.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。

15.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

16.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

17.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

18.尽量避免大事务操作,提高系统并发能力。

19.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

20. 避免使用不兼容的数据类型。例如float和int、char和varchar、binary和varbinary是不兼容的(条件判断时)。数据类型的不兼容可能使优化器无法执行一些本来可以进行的优化操作。例如:

SELECT name FROM employee WHERE salary > 60000

在这条语句中,如salary字段是money型的,则优化器很难对其进行优化,因为60000是个整型数。我们应当在编程时将整型转化成为钱币型,而不要等到运行时转化。

21.充分利用连接条件(条件越多越快),在某种情况下,两个表之间可能不只一个的连接条件,这时在 WHERE 子句中将连接条件完整的写上,有可能大大提高查询速度。

例:

SELECT SUM(A.AMOUNT) FROM ACCOUNT A,CARD B WHERE A.CARD_NO = B.CARD_NO

SELECT SUM(A.AMOUNT) FROM ACCOUNT A,CARD B WHERE A.CARD_NO = B.CARD_NO AND A.ACCOUNT_NO=B.ACCOUNT_NO

第二句将比第一句执行快得多。

22、使用视图加速查询

把表的一个子集进行排序并创建视图,有时能加速查询。它有助于避免多重排序 操作,而且在其他方面还能简化优化器的工作。例如:

SELECT cust.name,rcvbles.balance,……other columns

FROM cust,rcvbles

WHERE cust.customer_id = rcvlbes.customer_id

AND rcvblls.balance>0

AND cust.postcode>“98000”

ORDER BY cust.name

如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个视图中,并按客户的名字进行排序:

CREATE VIEW DBO.V_CUST_RCVLBES

AS

SELECT cust.name,rcvbles.balance,……other columns

FROM cust,rcvbles

WHERE cust.customer_id = rcvlbes.customer_id

AND rcvblls.balance>0

ORDER BY cust.name

然后以下面的方式在视图中查询:

SELECT * FROM V_CUST_RCVLBES

WHERE postcode>“98000”

视图中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。

23、能用DISTINCT的就不用GROUP BY (group by 操作特别慢)

SELECT OrderID FROM Details WHERE UnitPrice > 10 GROUP BY OrderID

可改为:

SELECT DISTINCT OrderID FROM Details WHERE UnitPrice > 10

24.能用UNION ALL就不要用UNION

UNION ALL不执行SELECT DISTINCT函数,这样就会减少很多不必要的资源

35.尽量不要用SELECT INTO语句。

SELECT INOT 语句会导致表锁定,阻止其他用户访问该表。

上面我们提到的是一些基本的提高查询速度的注意事项,但是在更多的情况下,往往需要反复试验比较不同的语句以得到最佳方案。最好的方法当然是测试,看实现相同功能的SQL语句哪个执行时间最少,但是数据库中如果数据量很少,是比较不出来的,这时可以用查看执行计划,即:把实现相同功能的多条SQL语句考到查询分析器,按CTRL+L看查所利用的索引,表扫描次数(这两个对性能影响最大),总体上看询成本百分比即可。

三、算法的优化

尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

游标提供了对特定集合中逐行扫描的手段,一般使用游标逐行遍历数据,根据取出的数据不同条件进行不同的操作。尤其对多表和大表定义的游标(大的数据集合)循环很容易使程序进入一个漫长的等特甚至死机。

在有些场合,有时也非得使用游标,此时也可考虑将符合条件的数据行转入临时表中,再对临时表定义游标进行操作,可时性能得到明显提高。

(例如:对内统计第一版)

封装存储过程

四、建立高效的索引

创建索引一般有以下两个目的:维护被索引列的唯一性和提供快速访问表中数据的策略。大型数据库有两种索引即簇索引和非簇索引,一个没有簇索引的表是按堆结构存储数据,所有的数据均添加在表的尾部,而建立了簇索引的表,其数据在物理上会按照簇索引键的顺序存储,一个表只允许有一个簇索引,因此,根据B树结构,可以理解添加任何一种索引均能提高按索引列查询的速度,但会降低插入、更新、删除操作的性能,尤其是当填充因子(Fill Factor)较大时。所以对索引较多的表进行频繁的插入、更新、删除操作,建表和索引时因设置较小的填充因子,以便在各数据页中留下较多的自由空间,减少页分割及重新组织的工作。

索引是从数据库中获取数据的最高效方式之一。95% 的数据库性能问题都可以采用索引技术得到解决。作为一条规则,我通常对逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列[字段]采用非成组索引。不过,索引就象是盐,太多了菜就咸了。你得考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。

实际上,您可以把索引理解为一种特殊的目录。微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)。下面,我们举例来说明一下聚集索引和非聚集索引的区别:
其实,我们的汉语字典的正文本身就是一个聚集索引。比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”字就自然地排在字典的前部。如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就说明您的字典中没有这个字;同样的,如果查“张”字,那您也会将您的字典翻到最后部分,因为“张”的拼音是“zhang”。也就是说,字典的正文部分本身就是一个目录,您不需要再去查其他目录来找到您需要找的内容。
我们把这种正文内容本身就是一种按照一定规则排列的目录称为“聚集索引”。

如果您认识某个字,您可以快速地从自动中查到这个字。但您也可能会遇到您不认识的字,不知道它的发音,这时候,您就不能按照刚才的方法找到您要查的字,而需要去根据“偏旁部首”查到您要找的字,然后根据这个字后的页码直接翻到某页来找到您要找的字。但您结合“部首目录”和“检字表”而查到的字的排序并不是真正的正文的排序方法,比如您查“张”字,我们可以看到在查部首之后的检字表中“张”的页码是672页,检字表中“张”的上面是“驰”字,但页码却是63页,“张”的下面是“弩”字,页面是390页。很显然,这些字并不是真正的分别位于“张”字的上下方,现在您看到的连续的“驰、张、弩”三字实际上就是他们在非聚集索引中的排序,是字典正文中的字在非聚集索引中的映射。我们可以通过这种方式来找到您所需要的字,但它需要两个过程,先找到目录中的结果,然后再翻到您所需要的页码。
我们把这种目录纯粹是目录,正文纯粹是正文的排序方式称为“非聚集索引”。

进一步引申一下,我们可以很容易的理解:每个表只能有一个聚集索引,因为目录只能按照一种方法进行排序。

(一)何时使用聚集索引或非聚集索引

下面的表总结了何时使用聚集索引或非聚集索引(很重要)。

动作描述 使用聚集索引 使用非聚集索引

列经常被分组排序 应 应

返回某范围内的数据 应 不应

一个或极少不同值 不应 不应

小数目的不同值 应 不应

大数目的不同值 不应 应

频繁更新的列 不应 应

外键列 应 应

主键列 应 应

频繁修改索引列 不应 应

事实上,我们可以通过前面聚集索引和非聚集索引的定义的例子来理解上表。如:返回某范围内的数据一项。比如您的某个表有一个时间列,恰好您把聚合索引建立在了该列,这时您查询2004年1月1日至2004年10月1日之间的全部数据时,这个速度就将是很快的,因为您的这本字典正文是按日期进行排序的,聚类索引只需要找到要检索的所有数据中的开头和结尾数据即可;而不像非聚集索引,必须先查到目录中查到每一项数据对应的页码,然后再根据页码查到具体内容。

(二)结合实际,谈索引使用的误区

理论的目的是应用。虽然我们刚才列出了何时应使用聚集索引或非聚集索引,但在实践中以上规则却很容易被忽视或不能根据实际情况进行综合分析。下面我们将根据在实践中遇到的实际问题来谈一下索引使用的误区,以便于大家掌握索引建立的方法。

1、主键就是聚集索引

这种想法笔者认为是极端错误的,是对聚集索引的一种浪费。虽然SQL SERVER默认是在主键上建立聚集索引的。

通常,我们会在每个表中都建立一个ID列,以区分每条数据,并且这个ID列是自动增大的,步长一般为1。我们的这个办公自动化的实例中的列Gid就是如此。此时,如果我们将这个列设为主键,SQL SERVER会将此列默认为聚集索引。这样做有好处,就是可以让您的数据在数据库中按照ID进行物理排序,但笔者认为这样做意义不大。

显而易见,聚集索引的优势是很明显的,而每个表中只能有一个聚集索引的规则,这使得聚集索引变得更加珍贵。

从我们前面谈到的聚集索引的定义我们可以看出,使用聚集索引的最大好处就是能够根据查询要求,迅速缩小查询范围,避免全表扫描。在实际应用中,因为ID号是自动生成的,我们并不知道每条记录的ID号,所以我们很难在实践中用ID号来进行查询。这就使让ID号这个主键作为聚集索引成为一种资源浪费。其次,让每个ID号都不同的字段作为聚集索引也不符合“大数目的不同值情况下不应建立聚合索引”规则;当然,这种情况只是针对用户经常修改记录内容,特别是索引项的时候会负作用,但对于查询速度并没有影响。

在办公自动化系统中,无论是系统首页显示的需要用户签收的文件、会议还是用户进行文件查询等任何情况下进行数据查询都离不开字段的是“日期”还有用户本身的“用户名”。

通常,办公自动化的首页会显示每个用户尚未签收的文件或会议。虽然我们的where语句可以仅仅限制当前用户尚未签收的情况,但如果您的系统已建立了很长时间,并且数据量很大,那么,每次每个用户打开首页的时候都进行一次全表扫描,这样做意义是不大的,绝大多数的用户1个月前的文件都已经浏览过了,这样做只能徒增数据库的开销而已。事实上,我们完全可以让用户打开系统首页时,数据库仅仅查询这个用户近3个月来未阅览的文件,通过“日期”这个字段来限制表扫描,提高查询速度。如果您的办公自动化系统已经建立的2年,那么您的首页显示速度理论上将是原来速度8倍,甚至更快。

2、只要建立索引就能显著提高查询速度

事实上,我们可以发现上面的例子中,第2、3条语句完全相同,且建立索引的字段也相同;不同的仅是前者在fariqi字段上建立的是非聚合索引,后者在此字段上建立的是聚合索引,但查询速度却有着天壤之别。所以,并非是在任何字段上简单地建立索引就能提高查询速度。

从建表的语句中,我们可以看到这个有着1000万数据的表中fariqi字段有5003个不同记录。在此字段上建立聚合索引是再合适不过了。在现实中,我们每天都会发几个文件,这几个文件的发文日期就相同,这完全符合建立聚集索引要求的:“既不能绝大多数都相同,又不能只有极少数相同”的规则。由此看来,我们建立“适当”的聚合索引对于我们提高查询速度是非常重要的。

3、把所有需要提高查询速度的字段都加进聚集索引,以提高查询速度

上面已经谈到:在进行数据查询时都离不开字段的是“日期”还有用户本身的“用户名”。既然这两个字段都是如此的重要,我们可以把他们合并起来,建立一个复合索引(compound index)。

很多人认为只要把任何字段加进聚集索引,就能提高查询速度,也有人感到迷惑:如果把复合的聚集索引字段分开查询,那么查询速度会减慢吗?带着这个问题,我们来看一下以下的查询速度(结果集都是25万条数据):(日期列fariqi首先排在复合聚集索引的起始列,用户名neibuyonghu排在后列)

我们可以看到如果仅用聚集索引的起始列作为查询条件和同时用到复合聚集索引的全部列的查询速度是几乎一样的,甚至比用上全部的复合索引列还要略快(在查询结果集数目一样的情况下);而如果仅用复合聚集索引的非起始列作为查询条件的话,这个索引是不起任何作用的。当然,语句1、2的查询速度一样是因为查询的条目数一样,如果复合索引的所有列都用上,而且查询结果少的话,这样就会形成“索引覆盖”,因而性能可以达到最优。同时,请记住:无论您是否经常使用聚合索引的其他列,但其前导列一定要是使用最频繁的列。

(三)其他注意事项

“水可载舟,亦可覆舟”,索引也一样。索引有助于提高检索性能,但过多或不当的索引也会导致系统低效。因为用户在表中每加进一个索引,数据库就要做更多的工作。过多的索引甚至会导致索引碎片。

所以说,我们要建立一个“适当”的索引体系,特别是对聚合索引的创建,更应精益求精,以使您的数据库能得到高性能的发挥